1,794,463 research outputs found

    Secondary atmospheric tau neutrino production

    Full text link
    We evaluate the flux of tau neutrinos produced from the decay of pair produced taus from incident muons using a cascade equation analysis. To solve the cascade equations, our numerical result for the tau production ZZ moment is given. Our results for the flux of tau neutrinos produced from incident muons are compared to the flux of tau neutrinos produced via oscillations and the direct prompt atmospheric tau neutrino flux. Results are given for both downward and upward going neutrinos fluxes and higher zenith angles are discussed. We conclude that the direct prompt atmospheric tau neutrino flux dominates these other atmospheric sources of tau neutrinos for neutrino energies larger than a few TeV for upward fluxes, and over a wider range of energy for downward fluxes.Comment: 4 pages, 2 figure

    Secondary antiproton production in relativistic plasmas

    Get PDF
    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production

    Charmonium Production from the Secondary Collisions at LHC Energy

    Get PDF
    We consider the charmonium production in thermalized hadronic medium created in ultrarelativistic heavy ion collisions at LHC energy. The calculations for the secondary J/ψJ/\psi and ψ,\psi^, production by DDˉD\bar D annihilation are performed within a kinetic model taking into account the space-time evolution of a longitudinally and transversely expanding medium. We show that the secondary charmonium production appears almost entirely during the mixed phase and it is very sensitive to the charmonium dissociation cross section with co-moving hadrons. Within the most likely scenario for the dissociation cross section of the J/ψJ/\psi mesons their regeneration in the hadronic medium will be negligible. The secondary production of ψ,\psi^, mesons however, due to their large cross section above the threshold, can substantially exceed the primary yield.Comment: ps file 11

    The role of secondary Reggeons in central meson production

    Full text link
    We estimate the contribution of f_2 trajectory exchange to the central \eta and \eta^\prime production. It is shown that secondary Reggeons may give a large contribution to processes of double diffractive meson production at high energy.Comment: 7 pages, Latex, 5 figure

    e+e^+ and pˉ\bar{p} production in pppp collisions and the cosmic-ray e+/pˉe^+/\bar{p} flux ratio

    Full text link
    Secondary astrophysical production of e+e^+ and pˉ\bar{p} cosmic rays is considered. Inclusive π\pi, KK, and pˉ\bar{p} production cross sections in pppp collisions at large s\sqrt{s} are parametrised using recent experimental data at LHC energies. The astrophysical production rate ratio Qe+/QpˉQ_{e^+}/Q_{\bar{p}} is calculated for an input cosmic ray proton flux consistent with local measurements. At 10<E<10010<E<100\simGeV the cosmic ray flux ratio Je+/JpˉJ_{e^+}/J_{\bar{p}} measured by AMS02 falls below the production rate ratio by about 50\%, while at high energy E>100E>100\simGeV the measured flux ratio coincides with the production rate ratio of the secondary source.Comment: 9 pages, 8 figure

    Cosmic-ray propagation with DRAGON2: II. Nuclear interactions with the interstellar gas

    Full text link
    Understanding the isotopic composition of cosmic rays (CRs) observed near Earth represents a milestone towards the identification of their origin. Local fluxes contain all the known stable and long-lived isotopes, reflecting the complex history of primaries and secondaries as they traverse the interstellar medium. For that reason, a numerical code which aims at describing the CR transport in the Galaxy must unavoidably rely on accurate modelling of the production of secondary particles. In this work we provide a detailed description of the nuclear cross sections and decay network as implemented in the forthcoming release of the galactic propagation code DRAGON2. We present the secondary production models implemented in the code and we apply the different prescriptions to compute quantities of interest to interpret local CR fluxes (e.g., nuclear fragmentation timescales, secondary and tertiary source terms). In particular, we develop a nuclear secondary production model aimed at accurately computing the light secondary fluxes (namely: Li, Be, B) above 1 GeV/n. This result is achieved by fitting existing empirical or semi-empirical formalisms to a large sample of measurements in the energy range 100 MeV/n to 100 GeV/n and by considering the contribution of the most relevant decaying isotopes up to iron. Concerning secondary antiparticles (positrons and antiprotons), we describe a collection of models taken from the literature, and provide a detailed quantitative comparison.Comment: 22 pages, 12 figure

    Regional variability in the trophic requirements of shelf sea fisheries in the Northeast Atlantic, 1973-2000

    Get PDF
    Hydrographic, plankton, benthos, fisheries landings, and fish diet data from shelf sea areas in the Northeast Atlantic have been combined into an analysis of the foodweb structure and secondary production requirements of regional fisheries. Fish landings from the Baltic and North Sea are shown to be taken from a lower trophic level and are shown to be overall more planktivorous than those from shelf edge regions. The secondary production required per unit of landed fish from the North Sea was approximately half that for landings from the southwest approaches to the UK, referred to as the Celtic Seas, where zooplankton production accounted for only a small fraction of the secondary production demands of the fisheries. In the North Sea, variability in zooplankton production seems to have exerted a bottom-up effect on fish production, which in turn has exerted a top-down effect on the benthos. Conversely, Celtic Seas benthos production has been a bottom-up driver of fish production, which seems to have been independent of variability in plankton production.Thus, climate and fishing pressures can be expected to influence these regional fisheries in very different ways. Overall, the results indicate very strong spatial patterns in the fish foodweb structure and function, which will be important considerations in the establishment of regional management plans for fisheries

    The POPOP4 library and codes for preparing secondary gamma-ray production cross sections

    Get PDF
    The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor

    Hadronic interactions of primary cosmic rays with the FLUKA code

    Get PDF
    The measured fluxes of secondary particles produced by the interactions of cosmic rays with the astronomical environment represent a powerful tool to infer some properties of primary cosmic rays. In this work we investigate the production of secondary particles in inelastic hadronic interactions between several cosmic rays species of projectiles and different target nuclei of the interstellar medium. The yields of secondary particles have been calculated with the FLUKA simulation package, that provides with very good accuracy the energy distributions of secondary products in a large energy range. An application to the propagation and production of secondaries in the Galaxy is presented.Comment: 8 pages, 4 figures; Contribution to the 34th International Cosmic Ray Conference, July 30 to August 6, The Hague, Netherlands; fixing a typo in the y-axis label of Fig.
    corecore